Return to search

Characterization of a Cell Migration Defect in Drosophila melanogaster Border Cells in Response to the Chlamydia trachomatis TepP Effector

Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections worldwide and is also responsible for trachoma, the leading cause of preventable blindness. Despite being susceptible to most antibiotics, Chlamydia trachomatis is an enormously successful pathogen capable of causing serious health issues. Chlamydia trachomatis harbors a type III secretion system which delivers chlamydial proteins (a.k.a. effectors) into the mammalian host cell during the initial stages of infection and throughout the subsequent intracellular developmental cycle. One of the early secreted effectors is called translocated early phosphoprotein (TepP). In order to gain a better understanding of TepP, we employed Drosophila melanogaster as a model organism to identify novel gene functions. Transgenic fruit flies engineered to express TepP in designated tissues were used to identify macroscopic and/or microscopic phenotypic changes to Drosophila development. The fruit fly model allowed us to explore potential roles for TepP in disease progression. Using this in vivo model, a border cell migration defect was observed in the Drosophila egg chambers in response to the Chlamydia trachomatis effector protein TepP. Through knockdown and overexpression studies as well as qPCR we identified a likely interaction in the PVF1/PVR pathway between TepP and Crk to cause this migration defect. Development of this in vivo model provides a platform for rapid and efficient investigation of bacterial effector proteins of unknown function and interrogation of the mechanisms by which these proteins interact with host pathways to contribute to disease. By developing a better understanding of how chlamydial effectors contribute to disease we are able to identify novel targets to explore for prevention of C. trachomatis infections.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1749
Date01 January 2021
CreatorsRohal, Kayli
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0017 seconds