Return to search

Graph Neural Networks for Improved Interpretability and Efficiency

Attributed graph is a powerful tool to model real-life systems which exist in many domains such as social science, biology, e-commerce, etc. The behaviors of those systems are mostly defined by or dependent on their corresponding network structures. Graph analysis has become an important line of research due to the rapid integration of such systems into every aspect of human life and the profound impact they have on human behaviors. Graph structured data contains a rich amount of information from the network connectivity and the supplementary input features of nodes. Machine learning algorithms or traditional network science tools have limitation in their capability to make use of both network topology and node features. Graph Neural Networks (GNNs) provide an efficient framework combining both sources of information to produce accurate prediction for a wide range of tasks including node classification, link prediction, etc. The exponential growth of graph datasets drives the development of complex GNN models causing concerns about processing time and interpretability of the result. Another issue arises from the cost and limitation of collecting a large amount of annotated data for training deep learning GNN models. Apart from sampling issue, the existence of anomaly entities in the data might degrade the quality of the fitted models. In this dissertation, we propose novel techniques and strategies to overcome the above challenges. First, we present a flexible regularization scheme applied to the Simple Graph Convolution (SGC). The proposed framework inherits fast and efficient properties of SGC while rendering a sparse set of fitted parameter vectors, facilitating the identification of important input features. Next, we examine efficient procedures for collecting training samples and develop indicative measures as well as quantitative guidelines to assist practitioners in choosing the optimal sampling strategy to obtain data. We then improve upon an existing GNN model for the anomaly detection task. Our proposed framework achieves better accuracy and reliability. Lastly, we experiment with adapting the flexible regularization mechanism to link prediction task.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2067
Date01 January 2022
CreatorsPho, Patrick
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0021 seconds