Return to search

Cholera Transmission Dynamic Model with Environmental Impacts of Plankton Reservoirs

Cholera is an acute disease that is a global threat to the world and can kill people within a few hours if left untreated. In the last 200 years, seven pandemics occurred, and, in some countries, it remains endemic. The World Health Organization (WHO) declared a global initiative to prevent cholera by 2030. Cholera dynamics are contributed by several environmental factors such as salinity level of water, water temperature, presence of plankton especially zooplankton such as cladocerans, rotifers, copepods, etc. Vibrio cholerae (V. cholerae) bacterium is the main reason behind the cholera disease and the growth of V. cholerae depends on its host in the water reservoir which is the zooplankton because they share a symbiotic relationship. Investigating plankton bloom could be one of the key indicators for predicting cholera outbreaks. Though there are lots of models for cholera transmission dynamics, there are few existing models focused on the environmental impacts of plankton reservoirs. In this work, we have formulated a model of cholera transmission dynamics with the environmental impacts of plankton reservoirs. We have derived the basic reproduction number and discussed various alternative threshold parameters using the next generation matrix approach. Next, we have considered the existence and stability of the disease-free and positive equilibria. Our model analysis could be helpful for scientists to better understand the impact of environmental factors on cholera outbreaks and eventually for a possible prediction of the timing and location of the next cholera outbreak.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2087
Date01 January 2022
CreatorsSarker, Sweety
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0026 seconds