Return to search

Design and Control of a Dual Active Bridge Converter for Electric Vehicle (EV) and Photovoltaic (PV) Applications

With the growing concerns of climate change due to fossil fuel-based electricity generation, solar integration to the grid is swiftly increasing. However, the intermittency of solar power is a major obstacle to harness it efficiently. Energy storage system (ESS) with its declining price over the last few years is a viable solution to address this issue. Another source of greenhouse gas emission is fossil fuel-based transportation system which is likely to be replaced by electric vehicles (EVs) in near future. To match the driving range of EVs with the internal combustion engine-based vehicle, fast and extreme fast charging infrastructure in terms of power electronics and control must be developed. Utilization of multiport converters in both applications (EV charging and grid-connected solar+ESS) ensures higher efficiency, higher power density and improved reliability owing to the reduced number of power stages. This dissertation discusses multiport converter design and its control method for photovoltaic (PV) and EV applications. A system-level model predictive control (MPC) for a grid-connected ESS system with PV and load is developed to smooth the PV intermittency and improve ESS lifetime. Also, power electronic circuit level MPC guarantees real and reactive power control, output voltage regulation, and maximum power point tracking. Furthermore, a comprehensive review of converter topologies is carried out which leads to the selection of the dual active bridge (DAB) dc-dc converter as the fundamental power conversion unit. DAB topology is well-suited for its high efficiency, high power density, bidirectionality, soft switching, isolation, and wide range of voltage transfer ratio. Adding a resonant tank (LC or CLLLC) in the DAB configuration results in lower conduction loss and extended soft switching range. A three-port dc-dc-dc converter based on DAB with LC & CLLLC resonant tank has been introduced that integrates EV battery, PV, and dc-link for EV fast charging.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2647
Date01 January 2023
CreatorsSafayatullah, Md
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0021 seconds