Return to search

Multiomic Hypotheses Underlying Behavioral Manipulation of Camponotus floridanus ants by Ophiocordyceps camponoti-floridani fungi

Parasitic manipulation of host behavior lies at the intersection of disease, animal behavior, and coevolutionary processes. In many of these interactions, the underpinning biology is brought into sharp focus as they are obligate relationships, under strong selection to bring about specific changes in host behavior that determine if the parasite will transmit or die. However, experimental and molecular techniques to understand these interactions are still developing and identification of the mechanisms of manipulation is a primary goal in the field. As such, we investigated host-parasite interactions between Camponotus floridanus (Florida carpenter ant) and Ophiocordyceps camponoti-floridani (Florida zombie ant fungus) from multiple molecular perspectives. By combining genome, gene expression, protein-interaction, and metabolite data from multiple experiments, we analyzed parasitic manipulation in a multiomic framework. We considered the most robust hypotheses of how parasitic manipulation occurs to be those supported by multiomic data. Two major avenues of parasitic influence on host behavior appear to be direct interference with neurotransmission and dysregulation of core cellular pathways that affect behaviors. For example, heightened expression of host dopamine synthesis enzyme genes, predicted binding of secreted parasite proteins to dopamine receptors, and reduced dopamine precursor abundance during displays of manipulated behavior all correlate the dysregulation of dopaminergic processes to manipulation phenotypes. We discuss numerous possible hypotheses, many with multiomic support, some without. We predict that modification of host behavior is a complex and multi-layered process that integrates multiple mechanisms we propose here.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2694
Date01 January 2022
CreatorsWill, Ian
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0022 seconds