Return to search

Effect of Autoclave Process Parameters on Mechanical Behaviors of Carbon Fiber Reinforced Polymer Composites Fabricated via Additive Manufacturing

Additively manufactured carbon fiber reinforced polymers (CFRP) are vastly studied for their remarkable mechanical properties compared to most other 3D printed materials. Different methods were employed to further increase mechanical performance of CFRP 3D printed parts. The objective of the study is to investigate the effect of autoclave postprocessing on the interlaminar shear behavior between 3D printed CFRP layers. 3D printed CFRP samples were processed with nine combinations of temperature and vacuum in an autoclave. Short beam shear (SBS) tests were performed to characterize the interlaminar shear strength (ILSS) of the samples after autoclave processing. Digital image correlation (DIC) was utilized to quantify the strain and failure mode of the samples during SBS tests. From SBS mechanical tests, the curing temperature and vacuum of 170 C and -90 kPa produced samples with the highest ILSS, 39 MPa, a 46% improvement compared to uncured samples. The observed failure modes were fracture and delamination. Little work in additive manufacturing has applied autoclave as a post-process procedure. This study aims to explore this technique and establish its viability in improving mechanical performance of 3D printed fiber-reinforced parts.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-2512
Date01 January 2023
CreatorsNguyen, Quang Hao
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.0025 seconds