Return to search

Numerical solution of the two-phase incompressible navier-stokes equations using a gpu-accelerated meshless method

This project presents the development and implementation of a GPU-accelerated meshless two-phase incompressible fluid flow solver. The solver uses a variant of the Generalized Finite Difference Meshless Method presented by Gerace et al. [1]. The Level Set Method [2] is used for capturing the fluid interface. The Compute Unified Device Architecture (CUDA) language for general-purpose computing on the graphics-processing-unit is used to implement the GPU-accelerated portions of the solver. CUDA allows the programmer to take advantage of the massive parallelism offered by the GPU at a cost that is significantly lower than other parallel computing options. Through the combined use of GPU-acceleration and a radial-basis function (RBF) collocation meshless method, this project seeks to address the issue of speed in computational fluid dynamics. Traditional mesh-based methods require a large amount of user input in the generation and verification of a computational mesh, which is quite time consuming. The RBF meshless method seeks to rectify this issue through the use of a grid of data centers that need not meet stringent geometric requirements like those required by finite-volume and finite-element methods. Further, the use of the GPU to accelerate the method has been shown to provide a 16-fold increase in speed for the solver subroutines that have been accelerated.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-1898
Date01 January 2009
CreatorsKelly, Jesse
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015
RightsWritten permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Page generated in 0.002 seconds