Return to search

Activated leukocyte cell adhesion molecule (ALCAM) regulation of tumor cell behavior and neuronal targeting

Numerous events during development require the tightly controlled and regulated interaction of cells - from gastrulation in the early embryo to axonal pathfinding and remodeling of synaptic networks. Each of these events is dependent upon signals generated by cell-cell interactions, which are in turn specified by a diverse number of cell adhesion molecules. Many families of cell adhesion molecules have been described, and these fall into the broad categories of cadherins, immunoglobulin superfamily (IgSF) members, selectins, and integrins. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is a member of the IgSF, and controls numerous developmental processes, ranging from hematopoiesis to neuronal targeting. Furthermore, this protein has been implicated in the progression of numerous cancers of diverse origins. Despite the variety of developmental and pathological processes in which ALCAM has been implicated, little is known about how it signals in the cell - few extracellular binding partners have been isolated, and, as of this writing, no cytoplasmic interactors have been identified. The purpose of the work presented in this thesis was to elucidate the mechanisms by which ALCAM influences cell behavior, specifically in uveal melanoma cells, and to determine novel extra- and intracellular ligands. Here, I report the regulation of cadherin-based junctions by ALCAM in uveal melanoma cells, as well as provide evidence for a novel extracellular interaction with L1 cell adhesion molecule, and identify three novel intracellular binding partners.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-3048
Date01 May 2012
CreatorsJannie, Karry Marie
ContributorsWeiner, Joshua A.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2012 Karry Marie Jannie

Page generated in 0.0021 seconds