Return to search

Flow structure and performance of a flexible plunging airfoil

An investigation was performed with the intent of characterizing the effect of flexibility on a plunging airfoil, over a parameter space applicable to birds and flapping MAVs. The kinematics of the motion was determined using of a high speed camera, and the deformations and strains involved in the motion were examined. The vortex dynamics associated with the plunging motion were mapped out using particle image velocimetry (PIV), and categorized according to the behavior of the leading edge vortex (LEV). The development and shedding process of the LEVs was also studied, along with their flow trajectories. Results of the flexible airfoils were compared to similar cases performed with a rigid airfoil, so as to determine the effects caused by flexibility. Aerodynamic loads of the airfoils were also measured using a force sensor, and the recorded thrust, lift and power coefficients were analyzed for dependencies, as was the overall propulsive efficiency. Thrust and power coefficients were found to scale with the Strouhal number defined by the trialing edge amplitude, causing the data of the flexible airfoils to collapse down to a single curve. The lift coefficient was likewise found to scale with trailing edge Strouhal number; however, its data tended to collapse down to a linear relationship. On the other hand, the wake classification and the propulsive efficiency were more successfully scaled by the reduced frequency of the motion. The circulation of the LEV was determined in each case and the resulting data was scaled using a parameter developed for this specific study, which provided significant collapse of the data throughout the entire parameter space tested.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-4561
Date01 May 2013
CreatorsAkkala, James Marcus
ContributorsBuchholz, James H. J., 1974-
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2013 James Akkala

Page generated in 0.0028 seconds