Return to search

Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere redox probes

This thesis examines the effects of temperature on the electrochemistry of an aqueous solvent, HNO3, and a non aqueous solvent, acetonitrile and their respective analytes. It has been demonstrated previously that lowering the temperature of a solvent expands the available potential window in which to perform electrochemical experiments. The working window of an aqueous solvent is limited by the electrolysis of water. Cyclic voltammetry was utilized to examine the temperature effects on the rates of the oxidation and reduction of the solvent as well as the effects on the redox species in solution. The redox species experienced decreased peak splitting with lower temperatures, and the diffusion constants and rate constants were lowered as the temperature decreased. It was determined that the solvent window of the HNO3 solution was extended in experiments conducted at lower temperatures. The voltage window went from 2.349 V at 25 °C to 2.671 V at 5 °C. No significant improvement in the voltage window of acetonitrile was seen at lower temperatures. Rate constants for the oxidation and reduction of water were lowered and the voltage window of nitric acid expanded.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5498
Date01 December 2014
CreatorsNull, Emily Mrugacz
ContributorsLeddy, Johna
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2014 Emily Null

Page generated in 0.0018 seconds