Return to search

Human limb vibration and neuromuscular control

Mechanical loading can modulate tissue plasticity and has potential applications in rehabilitation science and regenerative medicine. To safely and effectively introduce mechanical loads to human cells, tissues, and the entire body, we need to understand the optimal loading environment to promote growth and health. The purpose of this research was 1) to validate a limb vibration and compression system; 2) to determine the effect of limb vibration on neural excitability measured by sub-threshold TMS-conditioned H-reflexes and supra-threshold TMS; 3) to determine changes in center of pressure, muscle activity, and kinematics during a postural task following limb vibration; 4) to determine the effect of vibration on accuracy and long latency responses during a weight bearing visuomotor task.
The major findings of this research are 1) the mechanical system presented in the manuscript can deliver limb vibration and compression reliably, accurate, and safely to human tissue; 2) sub-threshold cortical stimulation reduces the vibration-induced presynaptic inhibition of the H-reflex. This reduction cannot be attributed to an increase in cortical excitability during limb vibration because the MEP remains unchanged with limb vibration; 3) limb vibration altered the soleus and tibialis EMG activity during a postural control task. The vibration-induced increase in muscle activity was associated with unchanged center of pressure variability and reduced center of pressure complexity; 4) healthy individuals were able to accommodate extraneous afferent information due to the vibration interventions They maintained similar levels of accuracy of a visuomotor tracking task and unchanged long latency responses during an unexpected perturbation.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5748
Date01 May 2015
CreatorsMcHenry, Colleen Louise
ContributorsShields, Richard K.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2015 Colleen Louise McHenry

Page generated in 0.0171 seconds