Return to search

A combinatorial approach to the Cabling Conjecture

Dehn surgery and the notion of reducible manifolds are both important tools in the study of 3-manifolds. The Cabling Conjecture of Francisco González-Acuña and Hamish Short describes the purported circumstances under which Dehn surgery can produce a reducible manifold. This thesis extends the work of James Allen Hoffman, who proved the Cabling Conjecture for knots of bridge number up to four. Hoffman built upon the combinatorial machinery used by Cameron Gordon and John Luecke in their solution to the knot complement problem. The combinatorial approach starts with the graphs of intersection of a thin level sphere of the knot and the reducing sphere in the surgered manifold. Gordon and Luecke's proof then proceeds by induction on certain cycles. Hoffman provides more insight into the structure of the base case of the induction (i.e. in an innermost cycle or a graph containing no such cycles). Hoffman uses this structure in a case-by-case proof of the Cabling Conjecture for knots of bridge number up to four. We find trees with specific properties in the graph of intersection, and use them to provethe existence of structure which provides lower bounds on the number of the aforementioned innermost cycles. Our results combined with a recent lower bound on the number of vertices inside the innermost cycles succinctly prove the conjecture for bridge number up to five and suggests an approach to the conjecture for knots of higher bridge number.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6435
Date01 May 2016
CreatorsGrove, Colin Michael
ContributorsTomova, Maggy
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2016 Colin Grove

Page generated in 0.0022 seconds