Return to search

Proportional likelihood ratio mixed model for longitudinal discrete data

A semiparametric proportional likelihood ratio model was proposed by Luo and Tsai (2012) which is suitable for modeling a nonlinear monotonic relationship between the response variable and a covariate. Extending the generalized linear model, this model leaves the probability distribution unspecified but estimates it from the data. In this thesis, we propose to extend this model into analyzing the longitudinal data by incorporating random effects into the linear predictor. By using this model as the conditional density of the response variable given the random effects, we present a maximum likelihood approach for model estimation and inference. Two numerical estimation procedures were developed for response variables with finite support, one based on the Newton-Raphson algorithm and the other one based on generalized expectation maximization (GEM) algorithm. In both estimation procedures, Gauss-Hermite quadrature is employed to approximate the integrals.
Upon convergence, the observed information matrix is estimated through the second-order numerical differentiation of the log likelihood function. Asymptotic properties of the maximum likelihood estimator are established under certain regularity conditions and simulation studies are conducted to assess its finite sample properties and compare the proposed model to the generalized linear mixed model. The proposed method is illustrated in an analysis of data from a multi-site observational study of prodromal Huntington's disease.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6764
Date01 December 2016
CreatorsWu, Hongqian
ContributorsJones, Michael P.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2016 Hongqian Wu

Page generated in 0.0019 seconds