Return to search

Altered mTOR signaling in Huntington's Disease

Huntington's Disease (HD) is caused by a polyglutamine tract expansion in huntingtin (HTT). Despite HTTs ubiquitous expression, there is selective vulnerability in a specific brain region known as the striatum, the cause of which is poorly understood. Here, we provide evidence that impaired striatal mTORC1 activity underlies varied metabolic and degenerative phenotypes in striatal tissues from HD mouse models and patients, and show that further mTORC1 impairment in mouse models, achieved through the knockdown of Rhes, a striatum-enriched mTORC1 activator, exacerbates disease phenotypes. In contrast, exogenous addition of Rhes or the constitutively active form of the mTORC1 regulator, Rheb, into HD mouse brain, alleviates mitochondrial dysfunction, aberrant cholesterol homeostasis, striatal atrophy, and elicits increased autophagy, and reverses impaired dopamine signaling. Furthermore, while HD has been considered primarily a neurological disease, organs with high metabolic demand, such as heart, are also severely affected. The mechanism by which mHTT disrupts cardiac function remains unknown. I provide evidence that mTORC1 is impaired in HD mouse model hearts, causing hyperactive FoxO1 signaling which may render HD hearts vulnerable to stress induced cardiomyopathy. In sum, my combined work indicates impaired mTORC1 signaling as a primary mechanism underlying the neurodegenerative and heart-related disease phenotypes in HD, and thus presents a rational therapeutic target.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-7027
Date01 May 2015
CreatorsLee, John Hung
ContributorsDavidson, Beverly L.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2015 John Hung Lee

Page generated in 0.093 seconds