Return to search

TFAP2A in the neural crest gene regulatory network and disease

The neural crest is a transient, multipotent, cell population that gives rise to several important tissues during embryonic development, including the craniofacial skeleton, peripheral nervous system, and melanocytes. The neural crest arises from the ectoderm, along with the skin and central nervous system. This process of specification is dependent on a gene regulatory network (GRN) which is made up of transcription factors that regulate each other. While we know many of the members of this GRN, the direct connections among the members are largely unsolved. Breakdown of this GRN can lead to birth defects, such as cleft lip and palate, and cancer of neural crest derivatives, such as melanoma, thus understanding the intricate details of this network is important.
The transcription factor Tfap2a is an important member of the GRN, as loss of tfap2a and its paralog tfap2c leads to loss of pre-migratory neural crest and all neural crest derivatives. Despite its importance in this network little is known about how its expression is regulated. We hypothesized that, due to its importance in this network, it will have multiple enhancers that drive its expression in the neural crest. We have identified two neural crest enhancers of tfap2a. We found that one of these enhancers is responsive to WNT signals and is maintained by forming a positive feedback loop with Sox10. Our results suggest that this enhancer is important for both induction and maintenance of tfap2a expression in the neural crest.
Tfap2 paralogs are important at several different stages throughout neural crest lineage specification. However, the only direct target of Tfap2a that has been identified is sox10. Thus, we wanted to determine the direct targets of Tfap2 in this network. Through the integration of several data sets, including ATAC-seq and expression profiling of tfap2a/c double mutants, we have identified several direct targets including sox9b and alx1.
Melanoma is cancer of the melanocytes, a neural crest derivative. Recent studies have shown that melanoma and the neural crest share genetic similarities. TFAP2A expression is decreased in metastatic melanoma compared to primary tumors, thus we wanted to investigate the mechanism of TFAP2A in metastatic melanoma. We found that the promoter of TFAP2A is hypermethylated in some metastatic melanoma tumors. This was confirmed by samples in the TCGA database. Hypermethylation of the promoter contributes to the downregulation of TFAP2A in metastatic melanoma.
In conclusion, we have further illuminated the connections among transcription factors in the GRN important for neural crest lineage specification. Further, we have identified a new mechanism regulating TFAP2A expression in metastatic melanoma. Together, these studies reveal regulatory mechanisms of TFAP2A gene expression.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-8254
Date01 May 2019
CreatorsHallberg, Andrea Rachel
ContributorsCornell, Robert A.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2019 Andrea Rachel Hallberg

Page generated in 0.0018 seconds