This dissertation was inspired by difficult decisions patients of chronic diseases have to make about about treatment options in light of uncertainty. We look at rheumatoid arthritis (RA), a chronic, autoimmune disease that primarily affects the synovial joints of the hands and causes pain and deformities. In this work, we focus on several parts of a computer-based decision tool that patients can interact with using gestures, ask questions about the disease, and visualize possible futures. We propose a hand gesture based interaction method that is easily setup in a doctor's office and can be trained using a custom set of gestures that are least painful. Our system is versatile and can be used for operations like simple selections to navigating a 3D world. We propose a point distribution model (PDM) that is capable of modeling hand deformities that occur due to RA and a generalized fitting method for use on radiographs of hands. Using our shape model, we show novel visualization of disease progression. Using expertly staged radiographs, we propose a novel distance metric learning and embedding technique that can be used to automatically stage an unlabeled radiograph. Given a large set of expertly labeled radiographs, our data-driven approach can be used to extract different modes of deformation specific to a disease.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:cs_etds-1020 |
Date | 01 January 2014 |
Creators | Mihail, Radu P |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Computer Science |
Page generated in 0.0024 seconds