Return to search

ROLE OF DIPOLES IN THE BULK PHOSPHOR LAYER IN THE ELECTROLUMINANCE MECHANISMS OF A.C. THIN FILM ELECTROLUMINESCENT DISPLAY DEVICES

The purpose of this dissertation is to advance the understanding of SrS-based a. c. thin film electroluminescent (ACTFEL) devices. The role of traps in the bulk phosphor layer in the light emission mechanism from ACTFEL devices is studied, characterized and modeled.
Experiments were performed to observe the response of the ACTFEL devices to tailored voltage excitations. A physical model was developed to describe the optoelectronic processes taking place in the phosphor; analytical equations were written and numerically simulated to plot the flux and luminance responses of the device to similarly tailored voltage excitations.
The voltage excitation parameters such as amplitude, rise times and fall times were varied both experimentally and in simulations and their effect on the opto-electronic response of the device was studied. Thermally stimulated luminance studies were performed to determine critical device parameters. Theoretical predictions matched the experimental data in a qualitative manner. A much improved quantitative accuracy is obtained when the role of dipoles in the EL mechanisms is incorporated into the model.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1598
Date01 January 2008
CreatorsSivakumar, Praveen Kumar
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0023 seconds