A tournament graph G is a vertex set V of size n, together with a directed edge set E ⊂ V × V such that (i, j) ∈ E if and only if (j, i) ∉ E for all distinct i, j ∈ V and (i, i) ∉ E for all i ∈ V. We explore the following generalization: For a fixed k we orient every k-subset of V by assigning it an orientation. That is, every facet of the (k − 1)-skeleton of the (n − 1)-dimensional simplex on V is given an orientation. In this dissertation we bound the number of compatible k-simplices, that is we bound the number of k-simplices such that its (k − 1)-faces with the already-specified orientation form an oriented boundary. We prove lower and upper bounds for all k ≥ 3. For k = 3 these bounds agree when the number of vertices n is q or q + 1 where q is a prime power congruent to 3 modulo 4. We also prove some lower bounds for values k > 3 and analyze the asymptotic behavior.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:math_etds-1064 |
Date | 01 January 2019 |
Creators | Chandrasekhar, Karthik |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Mathematics |
Page generated in 0.0017 seconds