Halo nuclei are among the strangest nuclear structures.<p>They are viewed as a core containing most of the nucleons<p>surrounded by one or two loosely bound nucleons. <p>These have a high probability of presence at a large distance<p>from the core.<p>Therefore, they constitute a sort of halo surrounding the other nucleons.<p>The core, remaining almost unperturbed by the presence<p>of the halo is seen as a usual nucleus.<p><p><P><p><p>The Coulomb breakup reaction is one of the most useful<p>tools to study these nuclei. It corresponds to the<p>dissociation of the halo from the core during a collision<p>with a heavy (high <I>Z</I>) target.<p>In order to correctly extract information about the structure of<p>these nuclei from experimental cross sections, an accurate<p>theoretical description of this mechanism is necessary.<p><p><P><p><p>In this work, we present a theoretical method<p>for studying the Coulomb breakup of one-nucleon halo nuclei.<p>This method is based on a semiclassical approximation<p>in which the projectile is assumed to follow a classical trajectory.<p>In this approximation, the projectile is seen as evolving<p>in a time-varying potential simulating its interaction with the target.<p>This leads to the resolution of a time-dependent Schrödinger<p>equation for the projectile wave function.<p><p><P><p><p>In our method, the halo nucleus is described<p>with a two-body structure: a pointlike nucleon linked to a<p>pointlike core.<p>In the present state of our model, the interaction between<p>the two clusters is modelled by a local potential.<p><p><P><p><p>The main idea of our method is to expand the projectile wave function<p>on a three-dimensional spherical mesh.<p>With this mesh, the representation of the time-dependent potential<p>is fully diagonal.<p>Furthermore, it leads to a simple<p>representation of the Hamiltonian modelling the halo nucleus.<p>This expansion is used to derive an accurate evolution algorithm.<p><p><P><p><p>With this method, we study the Coulomb breakup<p>of three nuclei: <sup>11</sup>Be, <sup>15</sup>C and <sup>8</sup>B.<p><sup>11</sup>Be is the best known one-neutron halo nucleus.<p>Its Coulomb breakup has been extensively studied both experimentally<p>and theoretically.<p>Nevertheless, some uncertainty remains about its structure.<p>The good agreement between our calculations and recent<p>experimental data suggests that it can be seen as a<p><I>s1/2</I> neutron loosely bound to a <sup>10</sup>Be core in its<p>0<sup>+</sup> ground state.<p>However, the extraction of the corresponding spectroscopic factor<p>have to wait for the publication of these data.<p><p><P><p><p><sup>15</sup>C is a candidate one-neutron halo nucleus<p>whose Coulomb breakup has just been studied experimentally.<p>The results of our model are in good agreement with<p>the preliminary experimental data. It seems therefore that<p><sup>15</sup>C can be seen as a <sup>14</sup>C core in its 0<sup>+</sup><p>ground state surrounded by a <I>s1/2</I> neutron.<p>Our analysis suggests that the spectroscopic factor<p>corresponding to this configuration should be slightly lower<p>than unity.<p><p><P><p><p>We have also used our method to study the Coulomb breakup<p>of the candidate one-proton halo nucleus <sup>8</sup>B.<p>Unfortunately, no quantitative agreement could be obtained<p>between our results and the experimental data.<p>This is mainly due to an inaccuracy in the treatment<p>of the results of our calculations.<p>Accordingly, no conclusion can be drawn about the pertinence<p>of the two-body model of <sup>8</sup>B before an accurate reanalysis of these<p>results.<p><p><P><p><p>In the future, we plan to improve our method in two ways.<p>The first concerns the modelling of the halo nuclei.<p>It would be indeed of particular interest to test<p>other models of halo nuclei than the simple two-body structure<p>used up to now.<p>The second is the extension of this semiclassical model to<p>two-neutron halo nuclei.<p>However, this cannot be achieved<p>without improving significantly the time-evolution algorithm so as to<p>reach affordable computational times. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/211186 |
Date | 29 January 2004 |
Creators | Capel, Pierre |
Contributors | Baye, Daniel Jean, Beauwens, Robert, Michel, Francis, Thompson, Ian, Godefroid, Michel, Willain, Christiane |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des sciences appliquées – Physique, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | French |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v., No full-text files |
Page generated in 0.0031 seconds