Return to search

The eukaryotic translation initiation factor 2, a hero turned villain in β cells

The prevalence of type 2 diabetes is increasing dramatically worldwide. Type 2 diabetes is a major health and socio-economic burden. Genetic predisposition and the obesity epidemic, due to sedentary life style and high caloric food intake, are associated with development of type 2 diabetes. Circulating free fatty acids (FFAs), in particular saturated FFAs, are linked with insulin resistance and β cell dysfunction. Following this background we performed RNA sequencing of human pancreatic islets treated with the saturated FFA palmitate to acquire a global image of the islet response to this insult. We identified several stress pathways induced by palmitate with a major induction of the endoplasmic reticulum (ER) stress response. The ER stress response, in particular the PKR-like ER kinase (PERK) branch, has been shown to be induced by saturated FFA. It leads to increased β cell apoptosis both in fluorescence activated cell sorter (FACS) purified rat β cells and human islets. We further clarified the role of this pathway by studying the involvement of the constitutive repressor of eIF2α phosphorylation (CReP) in a monogenic form of diabetes. CReP is a repressor of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation. A direct target of PERK, eIF2α is involved in translational attenuation and induction of apoptosis. We have shown that CReP loss-of-function leads to a new syndrome of young onset diabetes, intellectual disability and microcephaly. The identified R658C mutation abrogated CReP activity leading to increased eIF2α phosphorylation and β cell apoptosis. To further demonstrate the importance of eIF2α dysregulation in β cell demise, we used guanabenz, a chemical inhibitor of growth arrest DNA damage inducible 34 (GADD34). GADD34 is an ER stress-induced repressor of eIF2α phosphorylation. Guanabenz potentiated FFA-mediated ER stress and apoptosis in clonal and primary rat β cells and in human islets through the activation of CCAAT/enhancer binding protein homologous protein (CHOP), downstream of eIF2α. Guanabenz administration in mice impaired glucose tolerance and led to β cell dysfunction. In ex vivo experiments guanabenz also induced β cell dysfunction in mouse and rat islets.In conclusion our data demonstrate that the dysregulation of signaling in the PERK/eIF2α pathway is crucial for β cell demise. Together with previously reported monogenic diabetes caused by loss-of-function mutations in PERK in man and the eIF2αS51A mutation in mice, our findings suggest that a narrow regulation of PERK/eIF2α signaling is central for proper β cell function and survival. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/251713
Date06 June 2017
CreatorsAbdulkarim, Baroj
ContributorsCnop, Miriam, Igoillo Esteve, Mariana, Langer, Ingrid, Christophe, Daniel, Erneux, Christophe, Heinrichs, Claudine, Gilon, Patrick, Abderrahmani, Amar A.
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté de Médecine – Médecine, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
FormatNo full-text files

Page generated in 0.0038 seconds