Return to search

Enhanced finite-element and reduced-order modelling of permanent-magnet synchronous machines

The number of electrical machines used in modern road-vehicles is continuously increasing to meet regulatory requirements regarding safety and efficiency, as well as consumer expectations in terms of comfort. For auxiliary applications, such as cooling fan or pumps, permanent-magnet synchronous machines (PMSMs) are extensively used owing to their high power density. This thesis focuses on the modelling aspects of PMSMs, with a particular focus on finite-element and reduced-order models to be used in system-level simulations. 2-D and 3-D parametric finite-element (FE) models are developed, allowing to compute irreversible demagnetization in addition to the standard quantities such as torque, back electromotive force and flux-linkages. The effects of magnet overhang on the performance of an interior PMSM is briefly discussed. Using the FE model, a reduced-order lookup-table (LUT) based electromagnetic model, having similar accuracy as FE analysis, is then developed. Coupled to a mechanical state-space representation obtained from a modal FE analysis, the final model allows to compute electromagnetic induced vibrations under pulse width modulation supply. The validation of the complete workflow is carried out on a 12slot-10pole PMSM used to drive a cooling fan. After fitting the damping coefficient in the structural state-space model, the results are in agreement with the experimental results. Due to the usage of LUTs, the simulation time is low compared to a pure FE analysis. This allows the model to be used to optimize low noise control strategies. To conclude this thesis, the parametric FE model is used in an optimization routine to minimize the cost and vibrations of the motor, whilst satisfying the working points. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/330530
Date24 August 2021
CreatorsPinto, Diogo
ContributorsGyselinck, Johan, Kempkes, Joachim, Henneaux, Pierre, Garone, Emanuele, Sergeant, Peter, Alberti, Luigi, Pop, Adrian-Cornel
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Electromécanicien, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format3 full-text file(s): application/pdf | application/pdf | application/pdf
Rights3 full-text file(s): info:eu-repo/semantics/closedAccess | info:eu-repo/semantics/restrictedAccess | info:eu-repo/semantics/closedAccess

Page generated in 0.0026 seconds