Return to search

The Role of RIPK1 Kinase Activity in Regulating Inflammation and Necroptotic Death

Necroptosis, a type of regulated necrotic cell death, involves cell membrane permeabilization and has been implicated in various acute and chronic pro-inflammatory diseases, including ischemia-reperfusion injury and neurodegenerative diseases. By using in vitro reconstitution studies and a chemical inhibitor, the kinase activity of the serine/threonine kinase RIPK1 had been shown to regulate necroptotic signaling downstream of TNF and Toll-like receptors (TLRs). To investigate the contribution of RIPK1 kinase activity to inflammation and necroptosis in vivo, we generated kinase inactive RIPK1 knock-in mice. Utilizing fibroblasts and macrophages from these mice, we demonstrate that RIPK1 kinase activity is required for necroptotic complex formation and death induction downstream of TNFR1 and TLRs 3 and 4. We show that RIPK1 kinase inactive mice are resistant to TNF-induced shock and exhibit impaired upregulation of TNF-induced cytokines and chemokines in vitro and in vivo. By using bone marrow reconstitution experiments, we demonstrate that RIPK1 kinase activity in a non-hematopoietic lineage drives TNF-induced lethality. We establish that RIPK1 kinase activity is required for TNF-induced increases in intestinal and vascular permeability and clotting, and implicate endothelial cell necroptosis as an underlying factor contributing to TNF/zVAD-induced shock. Thus, work in this thesis reveals that RIPK1 kinase inhibitors may have promise in treating shock and sepsis.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1958
Date18 January 2018
CreatorsZelic, Matija
PublishereScholarship@UMMS
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGSBS Dissertations and Theses
RightsLicensed under a Creative Commons license, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0016 seconds