Return to search

Small batch deep reinforcement learning

Dans l'apprentissage par renforcement profond basé sur la valeur avec des mémoires de relecture, le paramètre de taille de lot joue un rôle crucial en déterminant le nombre de transitions échantillonnées pour chaque mise à jour de gradient. Étonnamment, malgré son importance, ce paramètre n'est généralement pas ajusté lors de la proposition de nouveaux algorithmes. Dans ce travail, nous menons une vaste étude empirique qui suggère que la réduction de la taille des lots peut entraîner un certain nombre de gains de performances significatifs ; ceci est surprenant et contraire à la pratique courante consistant à utiliser de plus grandes tailles de lots pour améliorer la formation du réseau neuronal. Ce résultat inattendu défie la sagesse conventionnelle et appelle à une compréhension plus approfondie des gains de performances observés associés à des tailles de lots plus petites. Pour faire la lumière sur les facteurs sous-jacents, nous complétons nos résultats expérimentaux par une série d'analyses empiriques. Ces analyses approfondissent divers aspects du processus d'apprentissage, tels que l'analyse de la dynamique d'optimisation du réseau, la vitesse de convergence, la stabilité et les capacités d'exploration. Le chapitre 1 présente les concepts nécessaires pour comprendre le travail présenté, notamment des aperçus de l'Apprentissage Profond (Deep Learning) et de l'Apprentissage par Renforcement (Reinforcement Learning). Le chapitre 2 contient une description détaillée de nos contributions visant à comprendre les gains de performance observés associés à des tailles de lots plus petites lors de l'utilisation d'algorithmes d'apprentissage par renforcement profond basés sur la valeur. À la fin, des conclusions tirées de ce travail sont fournies, incluant des suggestions pour des travaux futurs. Le chapitre 3 aborde ce travail dans le contexte plus large de la recherche en apprentissage par renforcement. / In value-based deep reinforcement learning with replay memories, the batch size parameter plays a crucial role by determining the number of transitions sampled for each gradient update. Surprisingly, despite its importance, this parameter is typically not adjusted when proposing new algorithms. In this work, we conduct a broad empirical study that suggests {\em reducing} the batch size can result in a number of significant performance gains; this is surprising and contrary to the prevailing practice of using larger batch sizes to enhance neural network training. This unexpected result challenges the conventional wisdom and calls for a deeper understanding of the observed performance gains associated with smaller batch sizes. To shed light on the underlying factors, we complement our experimental findings with a series of empirical analyses such as analysis of network optimization dynamics, convergence speed, stability, and exploration capabilities. Chapter 1 introduces concepts necessary to understand the work presented, including overviews of Deep Learning and Reinforcement Learning. Chapter 2 contains a detailed description of our contributions towards understanding the observed performance gains associated with smaller batch sizes when using value based deep reinforcement learning algorithms. At the end, some conclusions drawn from this work are provided, including some exciting suggestion as future work. Chapter 3 talks about this work in the broader context of reinforcement learning research.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32517
Date11 1900
CreatorsObando-Ceron, Johan Samir
ContributorsCastro, Pablo Samuel, Bellemare, Marc
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0015 seconds