Return to search

Variability in tree-water relations from tree-line to tree-line in Canada's western boreal forest

Dans la forêt boréale, les températures augmentent et les régimes de précipitations changent, ce qui entraîne une augmentation de l'intensité et de la fréquence des conditions de sécheresse. Ces changements devraient se poursuivre et avoir des effets complexes et variables sur la végétation de la forêt boréale, notamment la modification de la composition due à la sécheresse, la mortalité des arbres et la disparition des forêts. L'objectif de cette thèse était de fournir une meilleure compréhension fonctionnelle des relations arbre-eau pour deux espèces d'arbres boréales communes et co-occurrentes (l’épinette noire; Picea mariana et le mélèze laricin; Larix laricina) à travers la forêt boréale de l'ouest du Canada. Pour ce faire, j’ai étudié comment les différents éléments de l'hydraulique des arbres, y compris la transpiration, et le déficit hydrique, étaient affectés par les conditions locales (structure du peuplement, conditions édaphiques et type de couverture terrestre), les stratégies fonctionnelles des arbres (caractéristiques structurelles et foliaires) et/ou les conditions climatiques (déficit de pression de vapeur, rayonnement, température de l'air, pluie et évapotranspiration). J'ai déterminé que l'utilisation acquisitive des ressources se traduisait par une productivité plus élevée chez le mélèze laricin, lorsque la disponibilité en eau était élevée, que les nutriments n'étaient pas limités et que la concurrence pour la lumière était favorable. L'épinette noire, en revanche, avait une acquisition lente des ressources, privilégiant la conservation de l'eau par rapport à la croissance radiale. J'ai déterminé que la transpiration de l'épinette noire et du mélèze laricin était influencée par l'hétérogénéité du site dans un complexe de tourbières boréales boisées, entraînant une variabilité de la contribution de la transpiration à l’échelle de l’évapotranspiration de l'écosystème. J’ai associé des variables environnementales au déficit hydrique des arbres au niveau de l'espèce afin de déterminer les facteurs de stress hydrique chez l'épinette noire et le mélèze laricin sur cinq sites de la limite sud à la limite nord de la forêt boréale. J'ai determiné que le déficit hydrique quotidien des arbres était contrôlé par la transpiration, tandis que les périodes plus longues (jours à semaines) de stress dû à la sécheresse étaient contrôlées par le rayonnement solaire et la disponibilité de l'eau, et étaient coordonnées avec les flux d'évapotranspiration à l’échelle du peuplement. Il est important de comprendre les relations hydriques des espèces d'arbres dans le biome boréal occidental du Canada, car la disponibilité en eau devrait devenir de plus en plus limitée dans cette région. Malgré des stratégies différentes selon les espèces pour faire face aux conditions actuelles de la forêt boréale, il existe des incertitudes quant à la résilience des arbres face aux changements environnementaux prévus. La poursuite des travaux visant à quantifier les réponses des espèces d'arbres communes et répandues à des conditions progressivement limitées en eau aidera à comprendre la résilience des forêts boréales face aux changements environnementaux rapides et à maintenir leurs services écosystémiques liés à la régulation du climat, à la séquestration du carbone, à l'habitat de la faune et de la flore, à la culture et à l'économie. / In the boreal forest, air temperatures are increasing, and precipitation regimes are changing, leading to amplified intensity and frequency of drought conditions. Changes are projected to continue, resulting in complex and variable effects on boreal forest vegetation including drought-induced forest compositional changes, tree mortality and, in some places, forest loss. The objective l of this work was to provide an improved functional understanding of tree-water relationships for two common and co-occurring boreal tree species (black spruce; Picea mariana and tamarack; Larix laricina) across Canada’s western boreal forest. To achieve this objective, I explored how different elements of tree-water relations, including transpiration, and tree water deficit were affected by local conditions (stand structure, edaphic conditions, and land cover type), tree functional strategies (structural and foliar traits), and/or meteorological conditions (vapor pressure deficit, radiation, air temperature, rain, and evapotranspiration). In Chapter 2, I explored the coordination between resource-use strategies of tamarack and black spruce, and found that acquisitive resource-use resulted in higher productivity in tamarack, when water availability was high, nutrients were not limited and competition for light was favourable. Black spruce, by contrast, had slow resource acquisition, prioritizing water conservation over radial growth. Next, in Chapter 3, I determined that transpiration of black spruce and tamarack were influenced by site heterogeneity across a forested boreal peatland complex, leading to variability in the contribution of stand-level transpiration to ecosystem evapotranspiration. Finally, in Chapter 4, I paired environmental variables with species-level tree water deficit to determine the drivers of water-stress in black spruce and tamarack across five sites spanning the extent of the boreal biome in western North America from the southern to northern boreal tree-line. I determined that daily tree water deficit was controlled by transpiration, while longer periods (days to weeks) of drought stress were controlled by solar radiation and water availability. Both short and long periods of tree water deficit caused greater stand-level fluxes of evapotranspiration. Understanding water relations of tree species in Canada’s western boreal biome is of utmost importance as water availability is projected to become increasingly limited in this region. Although tree species have different strategies to cope with current conditions in the boreal forest, there is uncertainty regarding the resilience of black spruce and tamarack to projected environmental changes. Continued work to quantify the responses of common and widespread tree species to progressively water-limited conditions will help to understand the resilience of boreal forests in the face of rapid environmental change, and to maintain their ecosystem services related to climate regulation, carbon sequestration, wildlife habitat, culture and economy.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32943
Date08 1900
CreatorsPerron, Nia Sigrun
ContributorsSonnentag, Oliver, Baltzer, Jennifer
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0069 seconds