Return to search

Cognitive Modeling of high-level cognition through Discrete State Dynamic processes

Modeling complex cognitive phenomena is a challenging task, especially when it is required to account for the functioning of a cognitive system interacting with an uncertain and changing environment. Psychometrics offers a heterogeneous corpus of computational tools to infer latent cognitive constructs from the observation of behavioral outcomes. However, there is not an explicit consensus regarding the optimal way to properly take into account the intrinsic dynamic properties of the environment, as well as the dynamic nature of cognitive states. In the present dissertation, we explore the potentials of relying on discrete state dynamic models to formally account for the unfolding of cognitive sub-processes in changing task environments. In particular, we propose Probabilistic Graphical Models (PGMs) as an ideal and unifying mathematical language to represent cognitive dynamics as structured graphs codifying (causal) relationships between cognitive sub-components which unfolds in discrete time. We propose several works demonstrating the advantage and the representational power of such a modeling framework, by providing dynamic models of cognition specified according to different levels of abstraction.

Identiferoai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/290039
Date17 February 2021
CreatorsD'Alessandro, Marco
ContributorsD'Alessandro, Marco, Lombardi, Luigi
PublisherUniversità degli studi di Trento, place:TRENTO
Source SetsUniversità di Trento
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/openAccess
Relationfirstpage:1, lastpage:132, numberofpages:132

Page generated in 0.002 seconds