Return to search

Effects of Extreme Low Temperature on Composite Materials

This thesis discusses the effect of cryogenic temperatures on composite materials. The work includes estimating the shear strength of carbon/epoxy and glass/polyester composites at low temperatures and finding the rate of generation of microcracks in composites at cryogenic temperatures by acoustic emission technique. Microcracks increase the permeability of composites. So to study the permeability growth with microcracks, equipment is also designed to measure the permeability of composite to low temperature fluids. With short beam shear testing it was observed that the shear strength of composites increases with decreasing temperatures. Also carbon/epoxy composites were found to be much stronger than glass/polyester composites. Cryogenic temperatures improve the strength of composites but also generate microcracks in the structure due to the thermal expansion mismatch between the matrix and fiber. With acoustic emission testing from room to –150ºC, it was found that the rate of generation of microcracks increases with reducing temperatures. The work is extended to design a permeability equipment.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1169
Date08 May 2004
CreatorsKichhannagari, Sridevi
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0023 seconds