Return to search

Determining the Crystal Structure of Cellulose III by Modeling

Recently, a one-chain monoclinic unit cell for Cellulose IIII having a single glucose in the asymmetric unit was proposed based on high-resolution diffraction patterns. The new work challenged a two-chain structure published 25 years earlier, although it did not provide new three-dimensional coordinates. Our goals were to solve the structure by modeling, find whether modeling would reject the previously determined two-chain unit cell, and compare the model with the anticipated experimental structure. Combinations of the O2, O3, and O6 hydroxyls produced 54 starting structures. Clusters of 13 cellotetraose chains terminated by methyl groups for each of the 54 starting structures were optimized with MM3(96). Hydroxyl groups on 16 of these 54 structures reoriented to give very similar hydrogenbonding schemes in the interiors, along with the lowest energies. The one-chain cell models had much lower energy. The eight best “up” one-chain models agree well with the structure newly determined by experiment.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1324
Date10 August 2005
CreatorsFord, Zakhia
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0021 seconds