Return to search

Buckling, Postbuckling and Imperfection Sensitivity Analysis of Different Type of Cylindrical Shells by Hui's Postbuckling Method

Hui and Chen (1986) were the first to show that the well-known Koiter’s General Theory of Elastic Stability of 1945 can be significantly improved by evaluating the postbuckling b coefficient at the actual applied load, rather than at the classical buckling load. Such improvement method was demonstrated to be (1) very simple to apply with no tedious algebra, (2) significant reduction in imperfection sensitivity and (3) although it is still asymptotically valid, there exists a significant extension of the range of validity involving larger imperfection amplitudes. Strictly speaking, Koiter’s theory of 1945 is valid only for vanishingly small imperfection amplitudes. Hence such improved method is termed Hui’s Postbuckling method. This study deals with the postbuckling and imperfection sensitivity of different kinds of cylinders, using the Hui’s postbuckling method. For unstiffened cylinder and laminate cylinder the results are compared with ABAQUS simulation results, and a parameter variation of stringer/ring stiffened cylinder is also evaluated. A significant positive shift of the postbuckling b coefficient is found which indicates that Koiter's general stability theory of 1945 has significantly overestimated the imperfection sensitivity of the structure. Also, compared with the Koiter's general stability theory, the valid region is significantly increased by using Hui's postbuckling method.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2780
Date20 December 2013
CreatorsXu, Hailan
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0027 seconds