Return to search

Changes in Gene Expression Levels of the Ecf Sigma Factor Bov1605 Under Ph Shift and Oxidative Stress in the Sheep Pathogen Brucella Ovis

Brucella ovis is a sexually transmitted, facultatively anaerobic, intracellular bacterial pathogen of sheep (Ovis aries) and red deer (Cervus elaphus). Brucella spp. infect primarily by penetrating the mucosa and are phagocytized by host macrophages, where survival and replication occurs. At least in some species, it has been shown that entry into stationary phase is necessary for successful infection. Brucella, like other alphaproteobacteria, lack the canonical stationary phase sigma factor ?s. Research on diverse members of this large phylogenetic group indicate the widespread presence of a conserved four-gene set including an alternative ECF sigma factor, an anti-sigma factor, a response regulator (RR), and a histidine kinase (HK). The first description of the system was made in Methylobacterium extorquens where the RR, named PhyR, was found to regulate the sigma factor activity by sequestering the anti-sigma factor in a process termed "sigma factor mimicry." These systems have been associated with various types of extracellular stress responses in a number of environmental bacteria. I hypothesized that homologous genetic sequences (Bov_1604-1607), which are similarly found among all Brucella species, may regulate survival functions during pathogenesis. To further explore the involvement of this system to conditions analogous to those occurring during infection, pure cultures of B. ovis cells were subjected to environments of pH (5 and 7) for 15, 30, and 45 minutes and oxidative (50mM H2O2) stress, or Spermine NONOate for 60 minutes. RNA was extracted and converted to cDNA andchanges in transcript levels of the sigma factor Bov1605 were measured using qPCR. Preliminary results indicate that under the exposure to Spermine NONOate there was little change in expression, but under oxidative stress expression of the sigma factor Bov1605 was 4.68-fold higher than that expressed under normal conditions. These results suggest that the sigma factor Bov1605 may be involved in oxidative stress defense during infection. Under acid stress (pH5), Bov1605 was found to be upregulated at 15 and 30 minutes, but after 45 and 60 minutes the time decreased.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc177218
Date12 1900
CreatorsKiehler, Brittany Elaine
ContributorsAllen, Michael S., Roberts, Aaron, O'Donovan, Gerard
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Kiehler, Brittany Elaine, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0107 seconds