Return to search

Deposition and Characterization of Thin Metal Oxide Heterostructures for Electronic and Magnetic Device Applications

The first study investigated the deposition and characterization of the CoO and Co3O4 phases of cobalt oxide. It was determined that both phases can be easily distinguishable by XPS, LEED and EELS and grown by only altering the oxygen partial pressure during MBE deposition. This fundamental knowledge gives a foundation for further experiments involving graphene growth on cobalt oxides. The second study focused on the layer-by-layer growth of graphene on another metal oxide, MgO. Past research gives promise of favorable interfacial interactions at the graphene/MgO interface though the exact growth mechanism is unknown. Layer by layer growth by MBE resulted in the characterization of a complex graphene oxide/buckled graphene/ graphene heterostructure confirmed by XPS, AES, LEED and EELS and supported by DFT calculations performed by the project's collaborators at the California Institute of Technology. This detailed look into graphene growth give valuable information that can be allied to graphene growth on similar oxide surfaces. The last project deviates from graphene-based studies and instead focused on interfacial interactions between two metal oxides, chrome oxide and titanium oxide. A corundum phase TiO2-x film was grown on Al2O3 via MBE and characterized using XPS, AES, LEED, and EELS. Data taken gives evidence of the presence of a two-dimensional election gas at the TiO2-x surface because of oxygen vacancies present after deposition. Deposition of chrome in UHV results in the formation of an oxidized chrome overlayer by abstraction of oxygen from the TiO2-x underlayer increasing the number of vacancies present. MOKE measurements taken by the project's collaborators at the University of Nebraska-Lincoln indicate that there is an interfacial exchange bias at the interface of the two oxides, a favorable property for magnetic device applications.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1944252
Date05 1900
CreatorsLadewig, Chad Samuel
ContributorsKelber, Jeffry, Marshall, Paul, Weber, Rebecca, Verbeck, Guido, Dowben, Peter
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Ladewig, Chad Samuel, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0086 seconds