Return to search

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated.

Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous research. The analytic chamber used in the field emission analysis demonstrated the ability to independently determine the value and changes in work function and emitter geometry by simultaneous measurement of the Field Emission Energy Distribution and Fowler-Nordheim I-V plots from single emitters.

Iridium oxide coating was found to enhance the stability of molybdenum emission tips with a relatively low work function of 4.2 eV and inhibited the formation of high work function molybdenum oxides. However, the method of deposition of iridium and annealing in oxygen to form iridium oxide on molybdenum emitters left rather severe cracking in the protective oxide coating exposing the molybdenum substrate.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2211
Date08 1900
CreatorsBernhard, John Michael
ContributorsGolden, David E., Brostow, Witold, 1934-, Gnade, Bruce, Hu, Zhibing
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Bernhard, John Michael, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0026 seconds