Return to search

Development of Cardiovascular Regulation in Embryos of the Domestic Fowl (Gallus Gallus), with a Partial Comparison to Embryos of the Desert Tortoise (Gopherus Agassizii)

In adult vertebrates, cardiovascular regulation is accomplished by numerous systems with neural, hormonal and local components responsible for the majority of regulation. These regulatory components work in concert to maintain the essential function of blood perfusion to adult tissues. Given the essential nature of this function it is therefore surprising that the development of cardiovascular regulation during gestation is poorly understood. The majority of what is known is based on a single vertebrate model, the fetal lamb. The fetal lamb has been used in multiple studies due to the clear clinical applications and has been pivotal in understanding the onset of regulation in developing vertebrates. However, study on the fetal lamb is limited to the latter 40% of gestation and has the added complication of an in-utero developmental strategy. Therefore the primary focus of this dissertation was to characterize basic cardiovascular regulation in the chicken embryo to provided the needed information for it's use an alternative to the fetal lamb. Developing chicken embryos rely on both alpha and beta adrenergic tones to maintain normal heart rate and arterial blood pressure during incubation. However, on day 21, just prior to hatch, these animals lose both tones on arterial pressure suggesting the onset of adult regulation. Cholinergic tone, however, was absent throughout chicken development indicating that it must mature during the neonatal life. Adult cardiovascular reflexes become apparent late in chicken development with a clear baroreflex specifically operating initially on day. However, an adult response to changes in ambient gas tension was absent during incubation suggesting embryos possess unique regulatory systems that are absent in adult chickens. This mechanism is comprised entirely of adrenergic systems with no cholinergic action during change in ambient gas tension. Similar developmental patterns were determined in embryos of the desert tortoise suggesting fundamental differences between in-utero and ex-utero developing vertebrates.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2223
Date08 1900
CreatorsCrossley, Dane Alan
ContributorsBurggren, Warren W., Fitzpatrick, Lloyd, Waller, William T., Zimmerman, Earl G., Gross, Guenter W.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Crossley, Dane Alan, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0022 seconds