Return to search

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2657
Date08 1900
CreatorsBigelow, Alan W.
ContributorsWeathers, Duncan L., Matteson, Samuel E., Duggan, Jerome L., McDaniel, Floyd D.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Bigelow, Alan W., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.002 seconds