Return to search

Effect of Fluorine and Hydrogen Radical Species on Modified Oxidized Ni(pt)si

NiSi is an attractive material in the production of CMOS devices. The problem with the utilization of NiSi, is that there is no proper method of cleaning the oxide on the surface. Sputtering is the most common method used for the cleaning, but it has its own complications. Dry cleaning methods include the reactions with radicals and these processes are not well understood and are the focus of the project. Dissociated NF3 and NH3 were used as an alternative and XPS is the technique to analyze the reactions of atomic fluorine and nitrogen with the oxide on the surface. A thermal cracker was used to dissociate the NF3 and NH3 into NFx+F and NHx+H. There was a formation of a NiF2 layer on top of the oxide and there was no evidence of nitrogen on the surface indicating that the fluorine and hydrogen are the reacting species. XPS spectra, however, indicate that the substrate SiO2 layer is not removed by the dissociated NF3 and NiF2 growth process. The NiF2 over layer can be reduced to metallic Ni by reacting with dissociated NH3 at room temperature. The atomic hydrogen from dissociated ammonia reduces the NiF2 but it was determined that the atomic hydrogen from the ammonia does not react with SiO2.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc28421
Date05 1900
CreatorsGaddam, Sneha Sen
ContributorsKelber, Jeffry A., Cooke, Steve
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Gaddam, Sneha Sen, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0066 seconds