Return to search

Detecting the Presence of Disease by Unifying Two Methods of Remote Sensing.

There is currently no effective tool available to quickly and economically measure a change in landmass in the setting of biomedical professionals and environmental specialists. The purpose of this study is to structure and demonstrate a statistical change-detection method using remotely sensed data that can detect the presence of an infectious land borne disease. Data sources included the Texas Department of Health database, which provided the types of infectious land borne diseases and indicated the geographical area to study. Methods of data collection included the gathering of images produced by digital orthophoto quadrangle and aerial videography and Landsat. Also, a method was developed to identify statistically the severity of changes of the landmass over a three-year period. Data analysis included using a unique statistical detection procedure to measure the severity of change in landmass when a disease was not present and when the disease was present. The statistical detection method was applied to two different remotely sensed platform types and again to two like remotely sensed platform types. The results indicated that when the statistical change detection method was used for two different types of remote sensing mediums (i.e.-digital orthophoto quadrangle and aerial videography), the results were negative due to skewed and unreliable data. However, when two like remote sensing mediums were used (i.e.- videography to videography and Landsat to Landsat) the results were positive and the data were reliable.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc3120
Date05 1900
CreatorsReames, Steve
ContributorsCleveland, Ana D., Atkinson, Samuel F., Hallum, Cecil, Norris, Cathleen, Young, Jon I.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Reames, Steve, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0026 seconds