Glucose and Altered Ceramide Biosynthesis Impact the Transcriptome and the Lipidome of Caenorhabditis elegans

The worldwide rise of diabetes and obesity has spurred research investigating the molecular mechanisms that mediate the deleterious effects associated with these diseases. Individuals with diabetes and/or obesity are at increased risk from a variety of health consequences, including heart attack, stroke and peripheral vascular disease; all of these complications have oxygen deprivation as the central component of their pathology. The nematode Caenorhabditis elegans has been established as a model system for understanding the genetic and molecular regulation of oxygen deprivation response, and in recent years methods have been developed to study the effects of excess glucose and altered lipid homeostasis. Using C. elegans, I investigated transcriptomic profiles of wild-type and hyl-2(tm2031) ( a ceramide biosynthesis mutant) animals fed a standard or a glucose supplemented diet. I then completed a pilot RNAi screen of differentially regulated genes and found that genes involved in the endobiotic detoxification pathway (ugt-63 and cyp-25A1) modulate anoxia response. I then used a lipidomic approach to determine whether glucose feeding or mutations in the ceramide biosynthesis pathway or the insulin-like signaling pathway impact lipid profiles. I found that gluocose alters the lipid profile of daf-2(e1370) (an insulin-like receptor mutant) animals. These studies indicate that a transcriptomic approach can be used to discover novel pathways involved in oxygen deprivation response and further validate C. elegans as a model for understanding diabetes and obesity.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc862756
Date08 1900
CreatorsLadage, Mary Lee
ContributorsPadilla, Pamela A., Chapman, Kent Dean, Root, Douglas D., Shulaev, Vladimir, Wright, Amanda
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Ladage, Mary Lee, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0029 seconds