Return to search

Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament

Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by troponin. (3) A shortened tropomyosin with five actin binding modules (instead of the native seven in muscle cells) binds actin contiguously in a head-to-tail manner and serves to increase the periodicity of troponin complexes on the actin filament. Such behavior eliminates the structure of the actin filament being responsible for the binding location of tropomyosin. (4) Differential behavior of myosin subfragment 1 i.e. (a) binding adjacent to troponin and (b) binding further away from troponin, is apparent as tropomyosin and troponin appear to govern the regions or "target zones" where myosin can bind productively along the actin filament. Physiologically, myosins able to bind close to troponin, but not participate in force production may function as mechanical sensors to attenuate or dampen the force generated from the so-called "target zones". Therefore, this could be a pseudo-regulatory mechanism that functions to protect the contractile apparatus from damage.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc9834
Date05 1900
CreatorsPatel, Dipesh A.
ContributorsRoot, Douglas D., Benjamin, Robert C., Chapman, Kent Dean, Dickstein, Rebecca, Padilla, Pamela A.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Patel, Dipesh A., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0022 seconds