Return to search

Studies of Crystal Structure Using Multiphoton Transitions in GaAs

We demonstrate experimentally that the multiphoton ionization rate in gallium arsenide depends on the alignment of the laser polarization with respect to the crystal axis. We show real-time modulation of 1900nm laser ionization rate, through viewing transmission, which mimics the symmetry of the semiconductor crystal. We propose that the modulation in the ionization rate arises because the varying reduced effective carrier mass, as predicted by Keldysh theory. We show direct comparison of the experimental transmission modulation depth with that predicted by Keldysh theory. This opens up a novel method for real-time non-invasive crystallography of crystalline materials.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/23369
Date January 2012
CreatorsGolin, Sarah M
ContributorsCorkum, Paul
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds