Return to search

Impact of Low Temperature on RNA Splicing of Aberrant Mitochondrial Group II Introns in Wheat Embryos

A subset of mitochondrial group II introns of flowering plants has, over evolutionary time, lost characteristic features and employs unconventional splicing pathways. Given the potential impact of cold treatment on RNA folding, as well as on enzymatic activity and import of nuclear-encoded splicing machinery, I have examined the physical excised forms of aberrant introns from wheat embryos subjected to 4oC. My findings suggest a shift in biochemistry with cold treatment to novel splicing pathways that generate heterogeneous in vivo circularized forms for nad1 intron 2, nad2 intron 1 and the cox2 intron, in contrast to predominantly linear excised intron forms at room temperature. Interestingly, the highly degenerate nad1 intron 1, which due to DNA rearrangement has been broken into two halves that interact for splicing in trans, is excised exclusively by first-step hydrolysis at room temperature and under cold treatment. In this case, splicing culminates in two distinct linear half introns that appears correlated with an unusual 5’ terminal insert. This represents the first in vivo demonstration of hydrolytic trans-splicing. Based on northern analysis, cold treatment was further associated with reduced splicing efficiency for all introns surveyed. Moreover, study of precursor transcripts of the nad1a-intron 1a locus suggests the efficiency of end-maturation, including processing of the cotranscribed tRNA-Pro gene, is also reduced in the cold. My findings demonstrate a temperature-sensitivity of transcript maturation, particularly for RNA splicing, providing new insight into the impact of cold growth conditions on plant mitochondrial gene expression.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30163
Date January 2013
CreatorsDalby, Stephen J.
ContributorsBonen, Linda
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds