Return to search

Genomic Analysis of Encephalitozoon Species

Microsporidia are obligate intracellular pathogens of medical and ecological importance whose genomes have been studied extensively over the last decade. Their parasitic lifestyle has lead them to lose a great number of genes and, thus, biochemical pathways capacities, but these reductive processes have been often offset by the acquisition of several genes by means of horizontal gene transfer (HGT). First, in this thesis, we will describe the complete genomes of Encephalitozoon hellem and Encephalitozoon romaleae. Both species also were found to harbor a number of protein-coding genes absent in other microsporidia, which products assembled complete metabolic pathways. All these genes are functionally related to DNA and folate metabolism, and all appear to have been acquired from HGT events from different eukaryotic and prokaryotic donors. Interestingly in E. romaleae genes involved in de novo synthesis of folate are all pseudogenes, highlighting the transient nature of transferred genes. Secondly, we took a closer look at the ploidy and sexual status of Encephalitozoon cuniculi, a vertebrate pathogen, by mapping Illumina sequence reads against the genomes of four strains of this species. We identified the presence of low level of heterozygosity in all strains investigated; a feature that revealed the diploid nuclear state of the species. This reductive intra-individual genetic diversity could result from the long-term propagation of these strains under laboratory conditions, but we propose that it could also reflect an intrinsic capacity of these vertebrate pathogens to self-reproduce. Overall, the work presented in this thesis resulted in a much greater understanding of the genome evolution of a medically and economically important group of parasites.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30314
Date January 2014
CreatorsSelman, Mohammed
ContributorsCorradi, Nicolas
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds