Return to search

A Crucial Epitope in the Influenza A and B Viral Neuraminidase and its Broad Inhibition by a Universal Antibody

The antigenic variability of the Influenza virus hinders our ability to develop new therapeutic and vaccine strategies which provide a broad protection against all influenza strains. It has been previously suggested that a means to approach this challenge is to identify conserved sequences within viral proteins and use these for future therapeutic targets. Although such conserved sequences are plentiful amongst the internal viral proteins, their lack of exposure to the host immune system makes mounting an immune response against these regions difficult. Alternatively, the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) have been shown to provide host protection against a limited number of influenza strains when used as vaccine targets; however conserved regions within these proteins which are also antibody accessible are extremely rare. My Ph.D. thesis project is focused on investigating the functional role of a conserved region within the NA protein and to further determine the protection afforded by a monoclonal antibody to this region.

In a comprehensive bioinformatics analysis, the only universally conserved sequence amongst all influenza A and B viral NA has been previously identified as being located between amino acids (a.a.) 222-230 (dubbed the HCA-2 region). However, the potential role of this region remains largely unknown. Through an array of experimental approaches including mutagenesis, reverse genetics and growth kinetics, I have found that substitutions in this sequence significantly affect viral replication by impairing the catalytic activity, substrate-binding and thermostability of NA. These findings prompted me to further investigate if antibody to this region may provide protection against influenza infection.

Indeed, universal monoclonal antibody (HCA-2 MAb) against this peptide provided broad inhibition against all nine subtypes of NA in vitro and heterosubtypic protection in mice challenged with lethal doses of mouse-adapted viruses. I further demonstrated that residues within this peptide that are exposed on the surface of NA and located in close proximity to the active site, I222 and E227, are indispensable for antibody-mediated inhibition. These data are the first to demonstrate a monoclonal antibody against the NA protein which provides heterosubtypic protection.

Since I observed that the HCA-2 antibody provided a broad inhibition against all nine subtypes of influenza A NA, I decided to investigate whether this inhibitory effect could be extended against Influenza B. Here, I have further reported that HCA-2 MAb provides a broad inhibition against various strains of influenza B viruses of both Victoria and Yamagata genetic lineage. I also demonstrate that the growth and NA enzymatic activity of two drug resistant influenza B strains are also inhibited by the HCA-2 antibody.

The findings of my Ph.D. thesis project have thus demonstrated that the HCA-2 region is paramount to optimal viral function. Additionally, my data show that antibodies generated against this region provide heterosubtypic protection both in vitro and in vivo and against drug resistant strains. These results indicate that this universally conserved epitope should be further explored as a potential target for future antiviral intervention and vaccine-induced immune responses.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30357
Date January 2014
CreatorsDoyle, Tracey
ContributorsLi, Xuguang (Sean)
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0027 seconds