Return to search

Patient-Specific Finite Element Modeling of the Mitral Valve

As the most commonly diseased heart valve, the mitral valve (MV) has been the subject of extensive research for many years. Unfortunately, the only treatment options currently available are surgical repair and replacement. Although repair is almost always preferable to replacement, it is often underperformed due to the complexity of MV repair surgeries. Consequently, there is significant interest in generating patient-specific finite element models of the MV for the purpose of simulating mitral repairs. For practical purposes transesophageal echocardiographic (TEE) images are most commonly used to reconstruct the mitral apparatus. However, limitations in ultrasound technology have prevented the detection of leaflet thicknesses. In the current study, a method was developed to accurately model variations in leaflet thicknesses using TEE datasets. Nine healthy datasets were modeled and the leaflet thicknesses were found to closely match previously reported results. As anticipated, normal valve function was also observed over the entire cardiac cycle.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/33396
Date January 2015
CreatorsAndison, Christopher
ContributorsLabrosse, Michel
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds