Return to search

The Role of Internal Convection in Respiratory Gas Transfer in Larval Zebrafish

Purely diffusive O2 transport typically is insufficient to sustain aerobic metabolism in most multicellular organisms. In small animals, however, a high surface-to-volume ratio may allow passive diffusion alone to supply sufficient O2 transfer. The purpose of this thesis was to explore the impacts of internal convection on the exchange of respiratory gases in a small complex organism, the larval zebrafish (Danio rerio). Thus, I tested the hypothesis that internal convection is required for the normal transfer of the respiratory gases O2 and CO2 and maintenance of resting aerobic metabolic rate. Use of morpholino knockdown of the VEGF-A and TNNT2 proteins allowed examination of two independent models lacking internal convection. Using micro-respirometry, I demonstrated that loss of internal convection reduces resting rates of O2 consumption and CO2 excretion in larvae at 4 days post fertilization. I also used the scanning micro-optrode technique to demonstrate that acute loss of internal convection resulted in reduced rates of cutaneous O2 flux, a trait that was reversed upon the restoration of internal convection. Finally, I demonstrated that in larval zebrafish, loss of internal convection resulted in decreased hypoxic performance and loss or severe reduction of the hypoxic cardiorespiratory responses. The results from these experiments showed that internal convection is i) required to maintain resting rates of respiratory gas transfer in the larval zebrafish, ii) important in facilitating the hypoxic cardiorespiratory responses in larval zebrafish and iii) augments O2 extraction capacity in the face of progressive hypoxia.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37904
Date20 July 2018
CreatorsHughes, Malcolm
ContributorsPerry, Steve
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds