Return to search

Automated Risk Management Framework with Application to Big Maritime Data

Risk management is an essential tool for ensuring the safety and timeliness of maritime operations and transportation. Some of the many risk factors that can compromise the smooth operation of maritime activities include harsh weather and pirate activity. However, identifying and quantifying the extent of these risk factors for a particular vessel is not a trivial process. One challenge is that processing the vast amounts of automatic identification system (AIS) messages generated by the ships requires significant computational resources. Another is that the risk management process partially relies on human expertise, which can be timeconsuming and error-prone.

In this thesis, an existing Risk Management Framework (RMF) is augmented to address these issues. A parallel/distributed version of the RMF is developed to e ciently process large volumes of AIS data and assess the risk levels of the corresponding vessels in near-real-time. A genetic fuzzy system is added to the RMF's Risk Assessment module in order to automatically learn the fuzzy rule base governing the risk assessment process, thereby reducing the reliance on human domain experts. A new weather risk feature is proposed, and an existing regional hostility feature is extended to automatically learn about pirate activity by ingesting unstructured news articles and incident reports. Finally, a geovisualization tool is developed to display the position and risk levels of ships at sea. Together, these contributions pave the way towards truly automatic risk management, a crucial component of modern maritime solutions. The outcomes of this thesis will contribute to enhance Larus Technologies' Total::Insight, a risk-aware decision support system successfully deployed in maritime scenarios.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38567
Date13 December 2018
CreatorsTeske, Alexander
ContributorsPetriu, Emil, Falcón Martínez, Rafael Jesús
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0029 seconds