Return to search

The Role of Hexokinase II in the Regulation of Glycolysis and Cisplatin Sensitivity in Ovarian Cancer

OVCA is the most lethal gynecological cancer, due primarily to late diagnosis and chemoresistance (Canada, 2014; Society, 2014b). CDDP resistance is a major hurdle to successful therapy (MayoClinic, 2014). The mechanism of chemoresistance is multi-factorial including defects in apoptotic pathway and key tumor suppressor as well as dysregulation of metabolism (Borst et al., 2000; Galluzzi et al., 2012a; Siddik, 2003). Elevated aerobic glycolysis is a major source for fulfilling high energy demand of cancer, but the role of metabolic reprogramming and its regulatory mechanism in OVCA cells remain unknown. p53 is a key tumor suppressor involved in apoptosis and frequent defect of p53 (> 80%) exist in epithelial OVCA. HKII is a key metabolic enzyme involved in the first step of glycolysis and its frequent presence in the mitochondria (80% >) has been reported in multiple cancers. We demonstrate here that CDDP-induced, p53-mediated HKII down-regulation and mitochondrial p53-HKII interaction are determinants of chemosensitivity in OVCA. CDDP decreased HKII (mRNA abundance, protein level), altered its cellular localization and glycolysis in p53-wt chemosensitive OVCA cells, a response loss or attenuated in p53 deficient cells. HKII depletion sensitized chemoresistant cells to CDDP -induced apoptosis in a p53- dependent manner. In addition, p53 binds to HKII and facilitates its nuclear localization. Mechanistically, our data suggest that CDDP-activated p53 (phosphorylated p53; P-p53 Ser15) interacts with HKII in the nucleus for its regulation. Upon entry to the nucleus, P-p53(Ser15) transcriptionally regulates HKII by promoter binding, contributing to the regulation of HKII and aerobic glycolysis, eliciting apoptosis in chemosensitive OVCA cells. Conversely, this response is compromised in p53 defect chemoresistant cells. Using proximity ligation assay (PLA) in human OVCA cell lines and primary tumor cells and tumor sections from OVCA patients, we have demonstrated that nuclear HKII-P-p53(Ser15) intracellular trafficking is associated with chemosensitivity in vitro and in vivo. Furthermore, the nuclear HKII-P-p53(Ser15) interaction may be useful as a biomarker for chemosensitivity in multiple epithelial subtypes of OVCA.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38574
Date14 December 2018
CreatorsHan, Chae Young
ContributorsTsang, Benjamin K.
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0025 seconds