Return to search

Understanding the Resistance and Virulence Mechanisms of Staphylococcus Epidermidis Triggered During Skin Disinfection, Blood Production and Storage

Bacterial contamination of platelet concentrates (PCs) represents the highest post-transfusion infectious risk. The skin flora bacterium Staphylococcus epidermidis has been reported to be the predominant aerobic contaminant of PCs. The Ramirez' group has shown that S. epidermidis can form surface-attached bacterial aggregates known as biofilms, and can outcompete other coagulase-negative staphylococci, such as Staphylococcus capitis, in PCs. The ability of S. epidermidis to form biofilms has been linked to increased pathogenicity and missed detection during PC screening with an automated culture system (BacT/ALERT). This thesis aimed at investigating the proliferative advantage and resistance mechanisms displayed by S. epidermidis in the PC milieu. Furthermore, in an effort to enhance PC safety for transfusion patients, I studied the anti-biofilm properties of essential oils and antimicrobial peptides (AMPs). My studies aimed at improving PC safety by focussing on both the point of introduction of bacterial contaminants (blood collection), and the stage at which bacterial contaminants can form biofilms and proliferate (PC storage). S. epidermidis can be found in the skin of blood donors as biofilms, which are resistant to the blood donor skin disinfectant currently used by Canadian Blood Services, chlorhexidine-gluconate and isopropyl alcohol (CHG-IPA). Here, several plant-extracted essential oils were evaluated for their ability to enhance the anti-biofilm activity of CHG-IPA. Data revealed that the Lavandula multifida oil and its main component (linalool) greatly enhanced the activity of CHG-IPA against S. epidermidis biofilms. Furthermore, the ability of a combination of three synthetic AMPs to inhibit S. epidermidis biofilm formation during PC storage was assessed These results showed that the combination of AMPs could inhibit biofilm formation but was ineffective against pre-formed S. epidermidis biofilms. The accumulation associated protein (Aap) encoded by the aap gene, found in most S. epidermidis strains and absent in S. capitis, plays a role in biofilm formation. When S. epidermidis aap is transformed into S. capitis, this bacterium displayed increased biofilm formation and proliferated to higher concentrations compared to untransformed S. capitis and to a S. epidermidis aap deletion mutant. Based on these results, aap appears to play a role in providing S. epidermidis a proliferative advantage in PCs by enhancing biofilm formation. Lastly, the GraRS system and SepA were studied for their role in S. epidermidis resistance to platelet-derived AMPs using the synthetic AMP PD4 as a model molecule.
Results indicate that the GraS mechanism is involved in resistance towards PD4. The work presented in my thesis provides further insights into why S. epidermidis has a proliferative advantage in the PC storage environment and allows for the proposal of alternative methods to enhance PC safety for transfusion patients.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38661
Date07 January 2019
CreatorsAlabdullatif, Meshari
ContributorsMah, Thien-Fah, Ramirez, Sandra
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0029 seconds