Return to search

Investigation of LTP-like Plasticity, Memory and Prefrontal Cortical Thickness: a TMS-EEG and Brain Imaging Study

Introduction: Memory is a complex cognitive process formerly linked to mechanisms of brain plasticity that can be estimated in the left dorsolateral prefrontal cortex (DLPFC) using transcranial magnetic stimulation and electroencephalography (TMS-EEG). Also, cortical thickness in the DLPFC may be a potential proxy measure of brain plasticity as previous literature reports a link between better memory and thicker cortex. However, the link between brain plasticity and memory performance as well as DLPFC thickness remains to be clarified. Methods: Intermittent theta burst stimulation (iTBS) probed plasticity-like mechanisms in the left DLPFC in 17 cognitively healthy participants. TMS-EEG recordings were performed before and after sham and active iTBS to quantify plasticity via transcranial magnetic stimulation-evoked potentials (TEPs). Composite memory scores for each domain (verbal episodic, visual episodic and working memory) were obtained using the Cambridge Neuropsychological Test Automated Battery. Anatomical T1 images were acquired by magnetic resonance imaging and processed by open-source software (CIVET) and the Automated Anatomical Labeling atlas to extract cortical thickness of the DLPFC. All statistical analyses (linear mixed model, Tukey's post hoc test and Pearson's correlations) were completed in R Studio. Results: iTBS resulted in increased TEP amplitude P30 (F= 5.239, p = 0.029), as shown by a significant interaction between condition (iTBS, sham) and time (pre- and post-condition). Specifically, Tukey's post hoc test revealed that the P30 increase was near trending significant post-iTBS compared to pre-iTBS for the active condition (p = 0.166) but not for the sham condition (p = 0.294). A trending significant relationship was observed between the magnitude of P30 change post-iTBS and thicker left DLPFC (r = 0.488; p = 0.108). Lastly, no significant relationships between P30 change and memory performance were observed. Conclusion: These preliminary findings suggest there could be a relationship between increased capacity for brain plasticity and a thicker left DLPFC. To further investigate these relationships, we plan to recruit additional cognitively healthy participants. Our preliminary findings support the foundation for future clinical studies in which DLPFC thickness could be explored as a predictive factor for response to plasticity-targeting iTBS treatment.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44463
Date04 January 2023
CreatorsDrodge, Jessica
ContributorsGuimond, Synthia, Tremblay, Sara
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.002 seconds