Return to search

Insights Into Pulmonary Hypertension Pathogenesis and Novel Stem Cell Derived Therapeutics

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by arterial pruning, occlusive vascular remodeling, and inflammation contributing to increased pulmonary vascular resistance with resultant right heart failure. Endothelial cell (EC) injury and apoptosis are commonly considered triggers for PAH, the mechanisms leading from injury to complex arterial remodeling are incompletely understood. While current therapies can improving symptoms, with the exception of parenteral prostacyclin, they do not significantly prolong transplant free survival. As well, there are no therapies that can regenerate the damaged lung short of transplantation. In this project, I sought to both advance the understanding of disease pathogenesis and explore regenerative therapeutic options for PAH. To this end, I first employed single cell RNA sequencing (scRNA-seq) at multiple time points during the Sugen 5416 (SU) – chronic hypoxia (CH) model of PAH, to provide new insights into PAH pathogenesis both during onset and progression of disease. We also employed microCT analysis to visualize and quantify the arterial pruning associated with PH and found significant loss up to 65% of the healthy arteriolar volume in this model. Through scRNA-seq analysis performed at four timepoints spanning the onset and progression of disease, two disease-specific EC cell types emerged as key drivers of PAH pathogenesis. The first was the emergence of capillary ECs with a de-differentiated gene expression profile, which we termed dedifferentiated capillary (dCap) ECs, with enrichment for the Cd74 gene. Interestingly, RNA velocity analysis suggested that these cells may be undergoing endothelial to mesenchymal transition during PAH development. At later times, a second arterial EC population became apparent, which we termed activated arterial ECs (aAECs), since it uniquely exhibited persistently elevated levels of differential gene expression consistent with a migratory, invasive and proliferative state. Interestingly, the aAECs together with the smooth muscle (SM)-like pericytes, a population which was also greatly expanded in PAH, expressed Tm4sf1, a gene previously associated with a number of cancers and abnormal cell growth. Furthermore, by immunostaining, TM4SF1 was found to be spatially localized to sites of complex and occlusive arterial remodeling, associated with both endothelial cells and pericytes in these lesions, suggesting an important role for the aAECs and SM-like pericytes in arterial remodeling and PH progression. Together, these findings suggest that aAECs, dCap ECs, and SM-like pericytes are emerging cell populations responsible for lung arterial remodeling in PAH, which drives disease progression, and that TM4SF1 may be a novel therapeutic target for this disease. As a first step in trying to develop approaches to regenerate lung arterial bed that is lost in PAH, we investigated the potential role of endothelial colony forming cells (ECFCs) and mesenchymal stromal cell (MSC) derived extracellular vesicles (EVs) as novel therapeutics, on the premise that these stem/progenitor cells would stimulate lung regeneration by mainly paracrine mechanisms. Additionally, we used biomaterials to microencapsulate cells and EVs to improve their local delivery and retention. While ECFCs were found to be ineffective in treating the monocrotaline model on their own, they were poorly retained in the lung and microencapsulation of ECFCs led to enhanced lung delivery within the first 72 hours, with resultant hemodynamic improvements in this model of PAH. MSCs are well known to be immunomodulatory and proangiogenic, largely acting through paracrine mechanisms, including by the release of EVs. Yet, following intravenous administration, nano sized EVs are rapidly cleared from circulation, potentially limiting their therapeutic potential. I adapted our microencapsulation strategy for EVs, and demonstrated significantly greater retention of microgel-loaded EVs were within the lung, resulting in enhanced local cell uptake. Interestingly, the hydrogel used for microencapsulation induced a local immune response which made it unsuitable for testing any potential therapeutic benefits of MSC-EVs in this study. Nonetheless, this work demonstrated proof-of-principle for the utility of microencapsulation as a strategy to enhance EV lung delivery. Overall, this work has identified novel lung cell populations (aAECs, dCap ECs, SM-like pericytes) driving arterial remodeling associated with PH progression, demonstrated the potential of ECFCs as a regenerative cell for the treatment of PAH, and illustrated the utility of microencapsulation as a tool to enhance lung targeting of both cells and EVs.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45782
Date03 January 2024
CreatorsCober, Nicholas
ContributorsStewart, Duncan John
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0024 seconds