Υπολογιστική νοημοσύνη στην οικονομία και τη θεωρία παιγνίων

Η διατριβή πραγματεύεται το αντικείμενο της Υπολογιστικής Νοημοσύνης στην Οικονομική και Χρηματοοικονομική επιστήμη. Στο πρώτο μέρος της διατριβής αναπτύσσονται μέθοδοι ομαδοποίησης και υπολογιστικής νοημοσύνης για τη μοντελοποίηση και πρόβλεψη χρονολογικών σειρών ημερησίων συναλλαγματικών ισοτιμιών. Η προτεινόμενη μεθοδολογία κατασκευάζει τοπικούς προσέγγιστές, με τη μορφή νευρωνικών δικτύων, για ομάδες προτύπων στο χώρο εισόδων που αναγνωρίζονται από μη-επιβλεπόμενους αλγόριθμους ομαδοποίησης. Στη συνέχεια κατασκευάζονται τεχνικοί κανόνες συναλλαγών απευθείας από τα δεδομένα με τη χρήση γενετικού προγραμματισμού. Η επίδοση των νέων κανόνων συγκρίνεται με αυτή των γενικευμένων κανόνων κινητού μέσου. Το δεύτερο μέρος της διατριβής πραγματεύεται την εφαρμογή εξελικτικών αλγορίθμων για τον υπολογισμό και την εκτίμηση του πλήθους σημείων ισορροπίας σε προβλήματα από τη θεωρία παιγνίων και τη νέα οικονομική γεωγραφία. Πιο συγκεκριμένα, αξιολογείται η ικανότητα των εξελικτικών αλγορίθμων να εντοπίσουν σημεία ισορροπίας κατά Nash σε πεπερασμένα στρατηγικά παίγνια και προτείνονται τεχνικές για τον εντοπισμό περισσοτέρων του ενός σημείων ισορροπίας. Τέλος εφαρμόζονται κριτήρια από τη θεωρία υπολογισμού σταθερών σημείων και τη θεωρία τοπολογικού βαθμού για τη διερεύνηση της ύπαρξης και της υπολογιστικής πολυπλοκότητας του υπολογισμού βραχυχρόνιων σημείων ισορροπίας σε μοντέλα νέας οικονομικής γεωγραφίας. / The thesis investigates Computational Intelligence methods in Economics and Finance. The first part of the thesis is devoted to computational intelligence methods and unsupervised clustering methods for modeling and forecasting daily exchange rate time series. A methodology is proposed that relies on local approximation, using artificial neural networks, for subregions of the input space that are identified through unsupervised clustering algorithms. Furthermore, we employ genetic programming to construct novel trading rules directly from the data. The performance of the novel rules is compared to that of generalised moving average rules. In the second part of the thesis we employ evolutionary algorithms to compute and to estimate the number of equilibria in finite strategic games and new economic geography models. In particular, we investigate the capability of evolutionary and swarm intelligence algorithms to compute Nash equilibria and propose an approach for the computation of more than one equilibria. Finally we employ criteria from the theory on computation of fixed points and topological degree theory to investigate the existence and the computational complexity of computing short run equilibria in new economic geography models.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/975
Date09 October 2008
CreatorsΠαυλίδης, Νίκος
ContributorsΒραχάτης, Μιχαήλ, Βραχάτης, Μιχαήλ, Παπαθεοδώρου, Θεόδωρος, Αλεβίζος, Φίλιππος, Βερναρδάκης, Νικόλαος, Λυκοθανάσης, Σπύρος, Συριόπουλος, Κωσταντίνος, Ανδρουλάκης, Γεώργιος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0028 seconds