Return to search

Non-invasive Reconstruction of the Myocardial Electrical Activity from Body Surface Potential Recordings

[EN] The behavior of the heart is governed by electrical currents generated in the myocardium, and therefore, the study of the cardiac electrical activity is essential for the diagnosis of cardiac diseases.
The forward problem of the electrocardiography (FP) entails the calculation of the torso potentials from the electrical activity of the heart and the 3D body model, while the inverse problem (IP) resolution allows the noninvasive reconstruction of the electrical activity of the heart from surface potentials. The IP is of great importance in clinical applications since it allows estimating the electrical activity of the myocardium with only noninvasive recordings. However, IP resolution is still a big challenge in electrocardiography since it is ill-posed, very unstable and has multiple solutions.
In this thesis different algorithms and strategies based on the IP resolution were developed and applied in the noninvasive diagnosis of ventricular and atrial arrhythmias and evaluated with mathematical cellular models and clinical data bases. The thesis focuses on the IP resolution for the noninvasive reconstruction of the myocardial electrical activity for different diseases and propagation patterns, implementing a novel system for complex propagation patterns. The obtained results and propagation patterns were evaluated and classified with the corresponding optimal resolution strategy that minimizes the error and increases the stability of the system, proving its advantages and disadvantages depending on the different diseases and their activation pattern.
A novel iterative method was implemented for the IP dipolar resolution optimized for representing simple propagation patterns, achieving a high stability and robustness against noise by constraining the solution to a limited number of dipoles. However, propagation patterns not representable by few dipoles need to be computed with the IP in terms of epicardial solutions which provide a more detailed estimation of the myocardial activity. IP resolution in the voltage and phase domains showed a good accuracy for simple and organized propagation patterns. This method allowed the noninvasive diagnosis of the Brugada syndrome or the location of ectopic focus in atrial arrhythmias by performing a parametric analysis of the electrograms morphology or the activation map reconstruction. However, mathematical and patient results presented in this thesis proved that, for complex propagation patterns like atrial fibrillation (AF), inverse solutions in the voltage and phase domains are over-smoothed and over-optimistic, simplifying the complex AF activity, leading to non-physiological results that do not match with the complex intracardiac electrograms recorded in AF patients. In this thesis, we proposed a novel technique for the noninvasive identification and location of high dominant frequency AF sources, based on the assumption that in many cases atrial drivers present the highest activation rate with an intermittent propagation to the rest of the tissue that activates at a slower rate. Although, voltage and phase inverse solutions for AF complex propagation patterns were over smoothed and inaccurate, the noninvasive estimation of frequency maps was significantly more accurate, allowing the identification of the AF frequency gradient and location of high frequency sources. This technique may help in planning ablation procedures, avoiding unnecessary interseptal punctures for right-to-left frequency gradients cases and facilitating the targeting of the AF drivers, reducing risk and time of the clinical procedure. / [ES] El comportamiento del corazón se rige por corrientes eléctricas generadas en el miocardio y, por lo tanto, el estudio de su actividad eléctrica es esencial para el diagnóstico de enfermedades cardíacas.
El problema directo (PD) de la electrocardiografía implica el cálculo de los potenciales del torso a partir de la actividad eléctrica del corazón y el modelo 3D del cuerpo, mientras que la resolución del problema inverso (PI) permite la reconstrucción no invasiva de la actividad eléctrica del corazón a partir de los potenciales de superficie, cobrando una gran importancia en la práctica clínica. Sin embargo, sigue siendo un gran desafío para la electrocardiografía ya que está mal planteado, es muy inestable y tiene múltiples soluciones.
A lo largo de esta tesis se han desarrollado diferentes estrategias para la resolución del PI, aplicándolas en el diagnóstico no invasivo de arritmias ventriculares y auriculares, verificándolas mediante modelos celulares matemáticos y bases de datos clínicas. La tesis se centra en la resolución del PI para la reconstrucción no invasiva de la actividad eléctrica del miocardio para diferentes enfermedades cardiacas con diferentes patrones de propagación, implementando un novedoso sistema para patrones de propagación complejos. Además, se han validado los resultados obtenidos y se han clasificado los diferentes patrones de propagación con la estrategia de resolución del PI óptima que minimice el error y aumente la estabilidad del sistema.
Un nuevo método iterativo fue implementado para la resolución del PI para fuentes dipolares, siendo óptimo para representar patrones de propagación simples, logrando una alta estabilidad e inmunidad al ruido al restringir la solución a un número limitado de dipolos. Sin embargo, los patrones de propagación que no pueden ser representados por un número limitado de dipolos deben calcularse mediante la resolución del PI en términos de potenciales epicárdicos, proporcionando una estimación más detallada de la actividad del miocardio. La resolución del PI en el dominio de la tensión y fase mostró ser muy preciso para patrones de propagación simples y organizados. Este método permite el diagnóstico no invasivo del síndrome de Brugada o la ubicación de focos ectópicos en arritmias auriculares mediante un análisis paramétrico de la morfología de los electrogramas o la reconstrucción de los mapas de activación. Sin embargo, los resultados matemáticos y clínicos presentados en esta tesis demostraron que, para patrones de propagación complejos como la fibrilación auricular (FA), los resultados obtenidos mediante la resolución del PI en el dominio de la tensión y fase son demasiado suaves y optimistas, simplificando enormemente la complejidad de la FA, llevando a resultados no fisiológicos que no coinciden con la actividad compleja de los electrogramas intracardiacos registrados en pacientes con FA. En esta tesis, se ha propuesto una novedosa técnica para la identificación y localización no invasiva de fuentes con una frecuencia dominante alta, basado en la suposición de que en muchos casos las fuentes eléctricas que generan y mantienen la FA presentan una tasa de activación más alta, con una propagación intermitente hacia el resto del tejido auricular cuya frecuencia de activación es más lenta. Aunque las soluciones en el dominio de la tensión y fase para patrones de propagación complejos fueron más suaves y menos precisas, la estimación no invasiva de los mapas de frecuencia fue significativamente más precisa, permitiendo la identificación del gradiente de frecuencia y ubicación de las fuentes de FA de alta frecuencia. Esta técnica puede ser de gran ayuda en la planificación de los procedimientos de ablación, evitando punciones interseptales innecesarias para casos con un gradiente de frecuencia de derecha a izquierda y facilitando la localización de las fuentes de alta frecuencia / [CAT] El comportament del cor es regeix per corrents elèctrics generades en el miocardi i, per tant, l'estudi de la seua activitat elèctrica és essencial per al diagnòstic de malalties cardíaques.
El problema directe (PD) de l'electrocardiografia implica el càlcul dels potencials del tors a partir de l'activitat elèctrica del cor i el model 3D del cos, mentre que la resolució del problema invers (PI) permet la reconstrucció no invasiva de l'activitat elèctrica del cor a partir de els potencials de superfície. La resolució del PI de l'electrocardiografia té una gran importància en la pràctica clínica atès que fa possible una estimació de l'activitat elèctrica del miocardi únicament a partir de registres no invasius. No obstant això, la resolució del PI segueix sent un gran desafiament per a la electrocardiografia ja que està mal plantejat, és molt inestable i té múltiples solucions.
Al llarg d'aquesta tesi s'han desenvolupat diferents estratègies basades en la resolució PI, aplicant-les en el diagnòstic no invasiu d'arítmies ventriculars i auriculars, verificant mitjançant models cel·lulars matemàtics i bases de dades clíniques. La tesi se centra en la resolució del PI per a la reconstrucció no invasiva de l'activitat elèctrica del miocardi per a diferents malalties cardíaques amb diferents patrons de propagació, implementant un nou sistema per a patrons de propagació complexos. A més se han validat els resultats obtinguts i se han classificat els diferents patrons de propagació amb l'estratègia de resolució del PI òptima que minimitze l'error i augmente l'estabilitat del sistema.
Un nou mètode iteratiu va ser implementat per a la resolució del PI per fonts dipolars, sent òptim per representar patrons de propagació simples, aconseguint una alta estabilitat i immunitat al soroll en restringir la solució a un nombre limitat de dipols. No obstant això, els patrons de propagació que no poden ser representats per un nombre limitat de dipols s'han de calcular mitjançant la resolució del PI en termes de potencials epicàrdics, proporcionant una estimació més detallada de l'activitat del miocardi. La resolució del PI en el domini de la tensió i fase va mostrar ser molt precís per a patrons de propagació simples i organitzats. Aquest mètode permet el diagnòstic no invasiu de la síndrome de Brugada o la ubicació de focus ectòpics en arítmies auriculars mitjançant una anàlisi paramètric de la morfologia dels electrogrames o la reconstrucció dels mapes d'activació. No obstant això, els resultats matemàtics i clínics presentats en aquesta tesi van demostrar que, per patrons de propagació complexos com la fibril·lació auricular (FA), els resultats obtinguts mitjançant la resolució del PI en el domini de la tensió i fase són massa suaus i optimistes, simplificant enormement la complexitat de la FA, obtenint resultats no fisiològics que no coincideixen amb l'activitat complexa dels electrogrames intracardiacos registrats en pacients amb FA. En aquesta tesi, s'ha proposat una nova tècnica per a la identificació i localització no invasiva de fonts amb una freqüència dominant alta, basat en la suposició que en molts casos les fonts elèctriques que generen i mantenen la FA presenten una taxa d'activació més alta, amb una propagació intermitent cap a la resta del teixit auricular on la freqüència d'activació és més lenta. Encara que, les solucions en el domini de la tensió i fase per patrons de propagació complexos van ser més suaus i menys precises, l'estimació no invasiva dels mapes de freqüència va ser significativament més precisa, permetent la identificació del gradient de freqüència i ubicació de les fonts de FA d'alta freqüència. Aquesta tècnica pot ser de gran ajuda en la planificació dels procediments d'ablació, evitant puncions interseptales innecessaris per a casos amb un gradient de freqüència de dreta a esquerra i facilitant la / Pedrón Torrecilla, J. (2015). Non-invasive Reconstruction of the Myocardial Electrical Activity from Body Surface Potential Recordings [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58268 / TESIS

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/58268
Date30 November 2015
CreatorsPedrón Torrecilla, Jorge
ContributorsGuillem Sánchez, María Salud, Millet Roig, José, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds